

Issued by: AUTOFLAME ENGINEERING LTD Unit 1-2, Concorde Business Centre Airport Industrial Estate, Wireless Road Biggin Hill, Kent TN16 3YN

Tel: +44 (0)845 872 2000 Fax: +44 (0)845 872 2010 Email: <u>salesinfo@autoflame.com</u> Website: <u>http://www.autoflame.com/</u>

Registered Holder:

Company:

Department:

This manual and all the information contained herein is copyright of Autoflame Engineering Ltd. It may not be copied in the whole or part without the consent of the Managing Director.

Autoflame Engineering Ltd's policy is one of continuous improvement in both design and manufacture. We therefore reserve the right to amend specifications and/or data without prior notice. All details contained in this manual are correct at the time of going to print.

Important Notes

A knowledge of combustion related procedures and commissioning is essential before embarking work on any of the M.M./E.G.A. systems. This is for safety reasons and effective use of the M.M./ E.G.A. system. Hands on training is required. For details on schedules and fees relating to group training courses and individual instruction, please contact the Autoflame Engineering Ltd. offices at the address listed on the front.

Short Form - General Terms and Conditions

A full statement of our business terms and conditions are printed on the reverse of all invoices. A copy of these can be issued upon application, if requested in writing.

The System equipment and control concepts referred to in this Manual MUST be installed, commissioned and applied by personnel skilled in the various technical disciplines that are inherent to the Autoflame product range, i.e. combustion, electrical and control.

The sale of Autoflame's systems and equipment referred to in this Manual assume that the dealer, purchaser and installer has the necessary skills at his disposal. i.e. A high degree of combustion engineering experience, and a thorough understanding of the local electrical codes of practice concerning boilers, burners and their ancillary systems and equipment.

Autoflame's warranty from point of sale is two years on all electronic systems and components.

One year on all mechanical systems, components and sensors.

The warranty assumes that all equipment supplied will be used for the purpose that it was intended and in strict compliance with our technical recommendations. Autoflame's warranty and guarantee is limited strictly to product build quality, and design. Excluded absolutely are any claims arising from misapplication, incorrect installation and/or incorrect commissioning.

Contents

1	FUEL CC	ONTROL VALVES	1
	1.1 Oil	Valve Sizing	2
	1.1.1	Spillback/ Bypass Application	2
	1.1.2	Metering/Simplex Application	3
	1.1.3	Oil Valve Flow Characteristics	4
	1.2 Oil	Valves	. 12
	1.2.1	Small Metering/ Simplex Oil Valve	. 13
	1.2.2	Small Spillback/Bypass Oil Valve	. 17
	1.2.3	Large Metering/Simplex Oil Valve	. 20
	1.2.4	Large Spillback/ Bypass Oil Valve	. 24
	1.3 Gas	s Valve Sizing	. 27
	1.3.1	Autoflame Butterfly Valve Flow Data	. 27
	1.4 Gas	s Valves	. 28
	1.4.1	Threaded Gas Valve with Small Servomotor	. 28
	1.4.2	Flanged 30mm Thick Gas Valve with Small Servomotor	. 30
	1.4.3	Flanged 50mm Thick Gas Valve with Large Servomotor	. 32
	1.5 Pigg	gy-Back Assembly	. 34
	1.5.1	Threaded Gas Valve with Oil Valve	. 34
	1.5.2	Flanged Gas Valve and Oil Valve	. 37
	1.6 FGF	? Valves	. 40
	1.7 Purg	ge and Start Position Proving	. 41
	1.7.1	Mk7 M.M. Purge and Start Position Proving	. 41
	1.7.2	Mini Mk8 M.M. End Limit Switches	. 42
2	SERVO	MOTORS	.43
	2.1 Smc	all Servomotor	. 43
	2.1.1	Small Servomotor Mounting Bracket and Coupling	. 46
	2.1.2	Servomotors – Direction Change	. 48
	2.2 Larg	ge Servomotor	. 49
	2.2.1	Large Servomotor Mounting Bracket and Coupling	. 52
	2.3 Indu	ustrial Servomotor	. 54
	2.3.1	Overview	. 54
	2.3.2	External Drawings	. 55
	2.3.3	Dimensions	. 56
	2.3.4	Specifications	. 57
	2.3.5	Installation	. 58

2.3.	6 Industrial Servomotor Mounting Bracket and Coupling – Dimensions	59
2.3.	7 Manual Operation	62
2.3.	8 Troubleshooting	63
2.3.	9 Industrial Servomotors – 4-20mA	63
2.4	Servicing Servomotors	64
2.4.	1 Servomotor Torque	64
3 WA	TER LEVEL VALVES	65
3.1	Threaded Water Valve	66
3.2	Flanged Water Valve	68
3.3	Coupling Open and Closed Positions	70
3.4	Feed Water Valve Sizing	71
5.4	reed water valve ofzing	

1 FUEL CONTROL VALVES

The standard execution of the gas valve is an aluminium body with stainless steel metering disk and stem. The gas valves can also be supplied for corrosive/contaminated fuels in all stainless steel construction. Price on application.

When using high viscosity low temperature fuel oils through smaller valves, turbulent flow characteristics can reduce volume throughput significantly.

All flow pressure graphs published for oil valves are using light distillate oil @ 20°C and a viscosity of 5 centistokes.

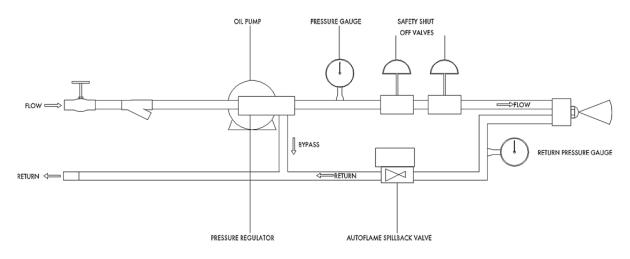
Autoflame will carry out flow characteristics test on specific valves against customer fuel/ viscosity and temperature specifications. Price on application.

Standard oil valve build execution is stainless steel valve body with stainless steel bobbin. The top and bottom closing plates are manufactured out of aluminium.

All valves can be supplied in non-standard material at extra cost. Price on application.

The standard execution of the FGR valve (flue gas recirculation) is a stainless steel body with stainless steel disk and stem but is dependent upon the application. Two grease nipple points are used for easy service of the FGR valves.

The maximum pressure for the control valves are:


- 350 PSI for oil valves
- 10 PSI for threaded gas valves
- 25PSI for flanged gas valves

1.1 Oil Valve Sizing

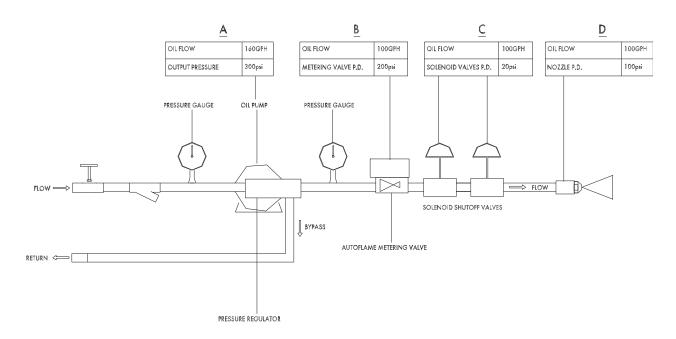
1.1.1 Spillback/ Bypass Application

To size an oil valve for a spillback/by pass application, please refer to the schematic and table below.

Information Required	Actual Data	Typical Data
Oil Pump Flow		1.6X Nozzle size
Oil Pump Pressure		350 to 450 PSI
Solenoid Delta P. (both valves		4 to 20 PSI
Nozzle Maximum Working Pressure		300 PSI
Nozzle Size (lb/hr)		1000 lb/hr
Return Oil Pressure at Low Fire		80 to 120 PSI

When sizing the oil valve for bypass systems. We have to determine the amount of oil being returned to the pump/tank at low fire and at what pressure. This information is then used against the valve charts in the Section 1.1.3. At low fire, the valve is most open and producing maximum flow.

Based on the above example:


1000lb/hr x 1.6	=	1600lb/hr
Low fire oil requirement	=	250lb/hr (based at 4:1 turndown = 1000/4)
1600lb/hr - 250lb/hr	=	1350lb/hr
Spillback oil flow	=	1350lb/hr @ 100PSI

Therefore, based on the charts in Section 1.1.3, the correct valve would be type 5.

For the spillback flow at that return oil pressure at low fire, choose the valve which allows the maximum movement in degrees for control. The valves should be chosen for the most open to the low fire position for the spillback valve.

1.1.2 Metering/Simplex Application

To size an oil valve for a spillback/by pass application, please refer to the schematic and table below.

Sizing Method

The following must be completed before the oil valve can be correctly sized for the pressure drop, at the metering valve. Together with the maximum oil flow, this will determine the valve required, based on the charts in section 1.1.3.

A - C - D = B

A = Output pressure at regulator

- C = Solenoid valves pressure difference
- D = Nozzle pressure difference

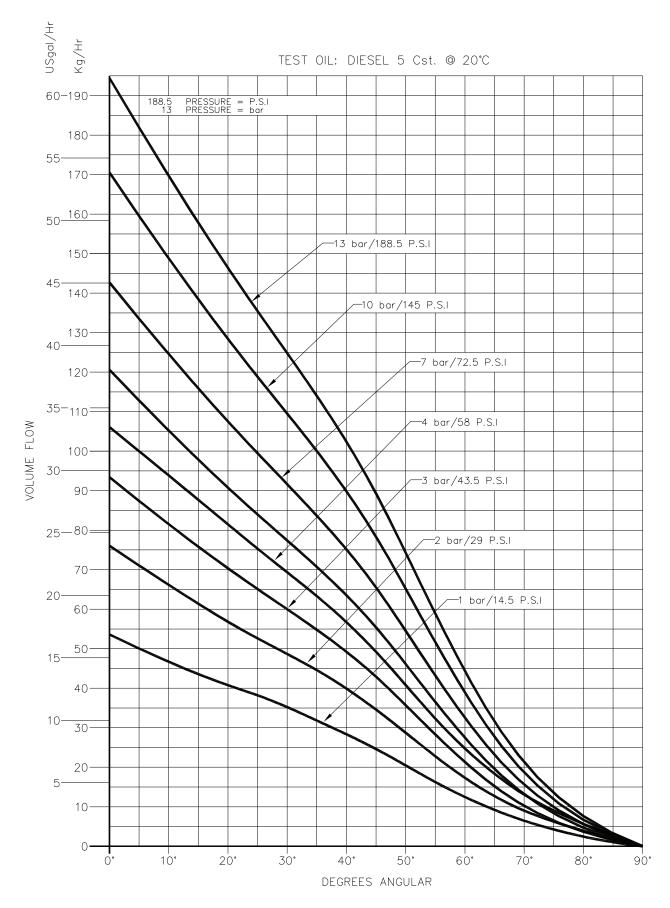
Example:

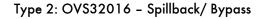
Knows parameters are pump max flow and pressure output. To determine the flow and pressure drop across the nozzle:

The difference between Valve A, C and D is applied to the charts in Section 1.1.3.

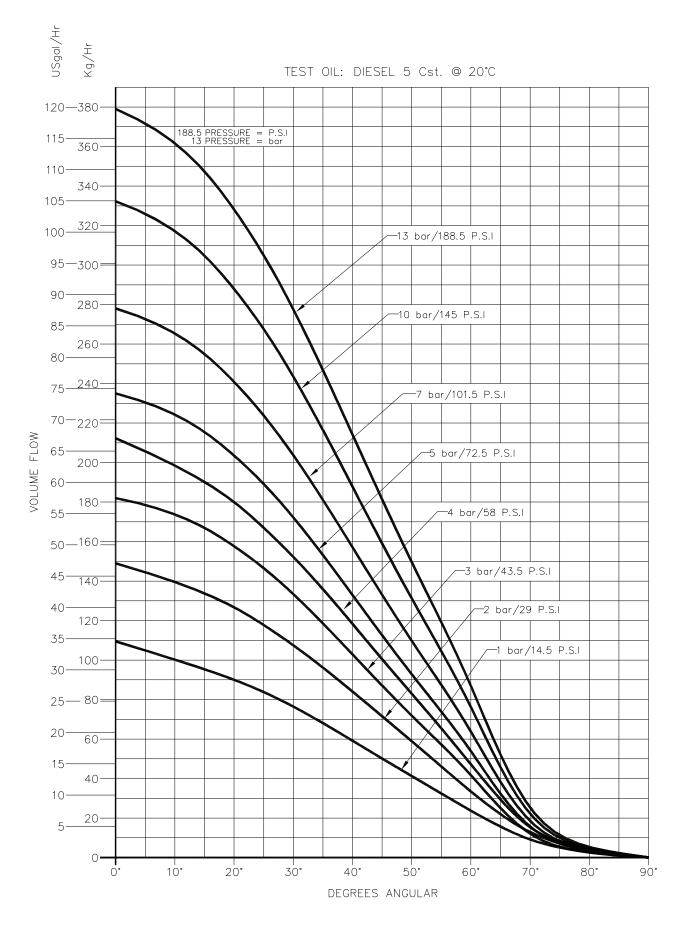
A = 300PSI C = 20PSI D = 100PSI

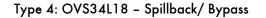
B = 300PSI - 20PSI - 100PSI = 180PSI pressure difference

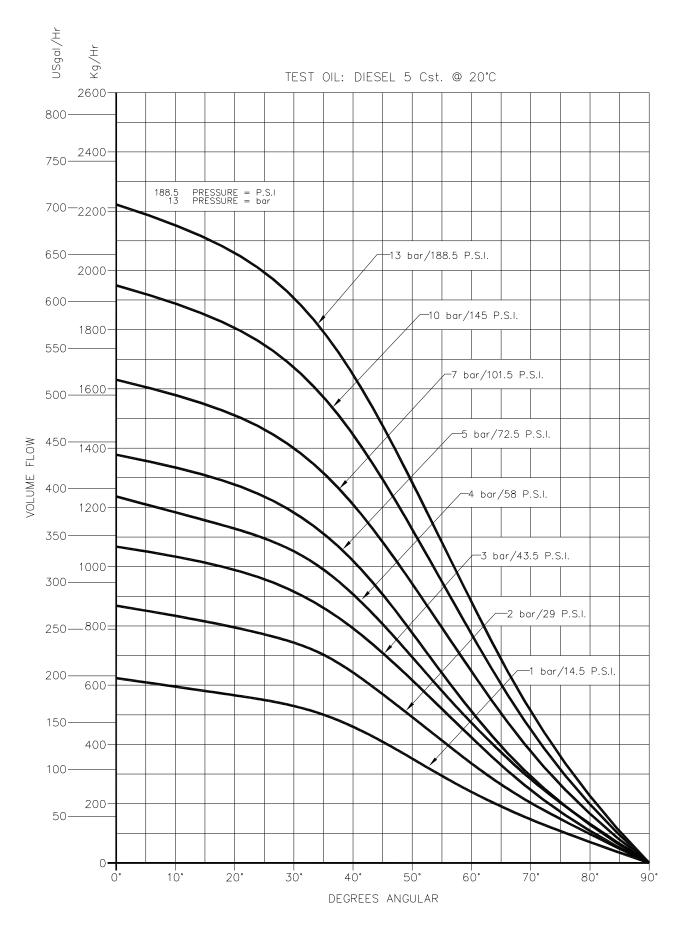

So the valve required needs to meet an oil flow of 100GPH @ 180PSI P.D.

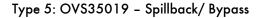

For the metering valve choose the valve which gives the maximum movement degrees of control. The valve should be chosen for the most open to high fire.

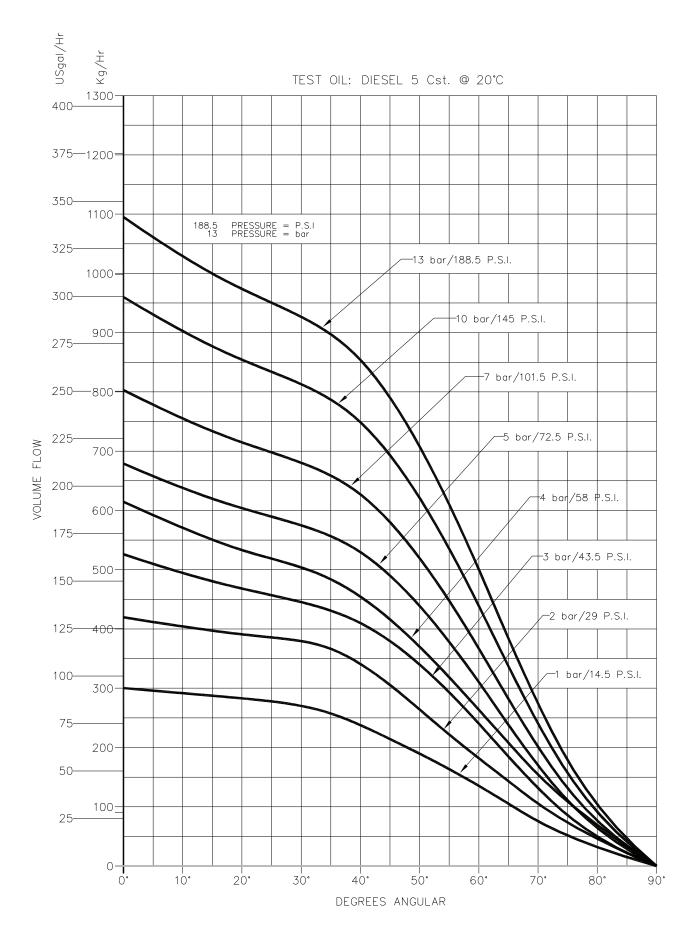
1.1.3 Oil Valve Flow Characteristics

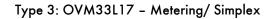

Type 1: OVS31015 - Spillback/ Bypass

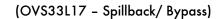

(OVM31015 - Metering/ Simplex)

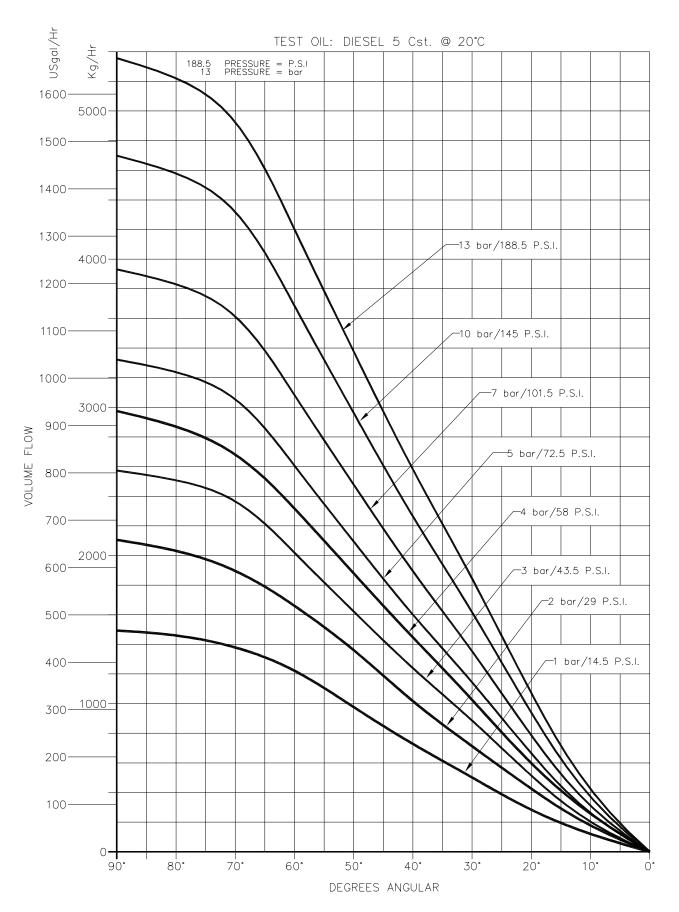


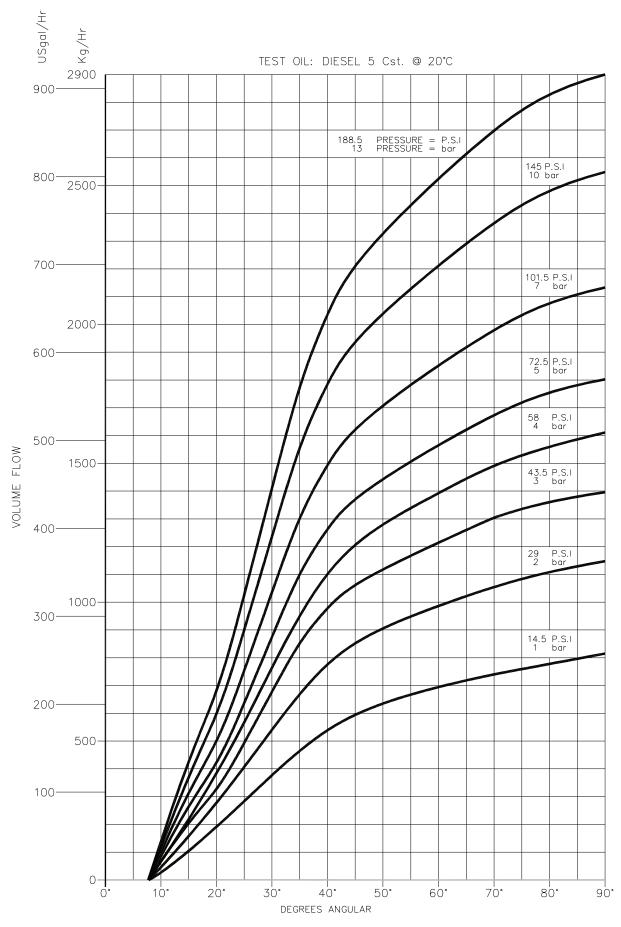


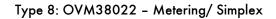


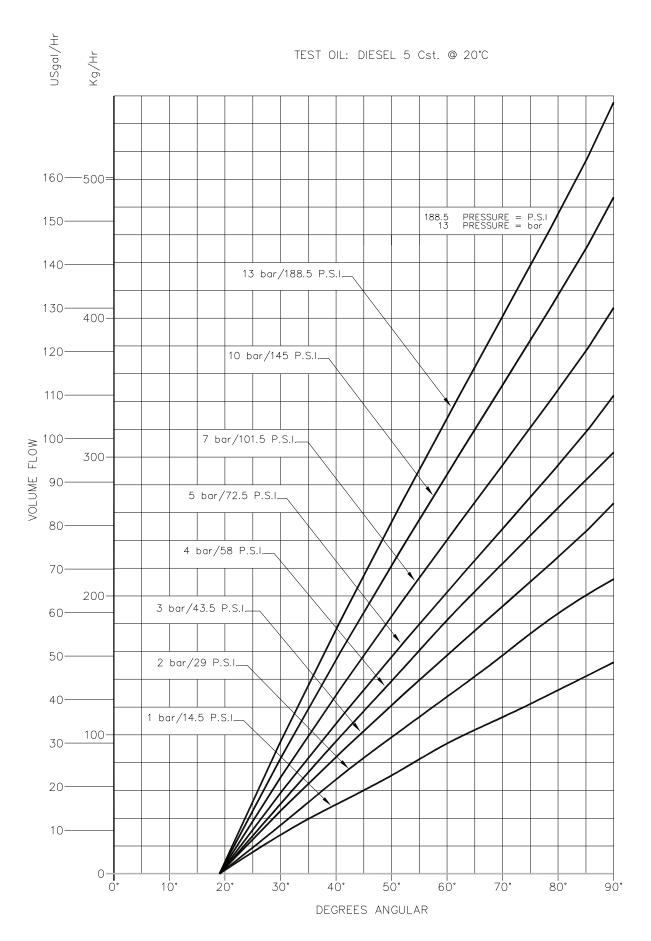


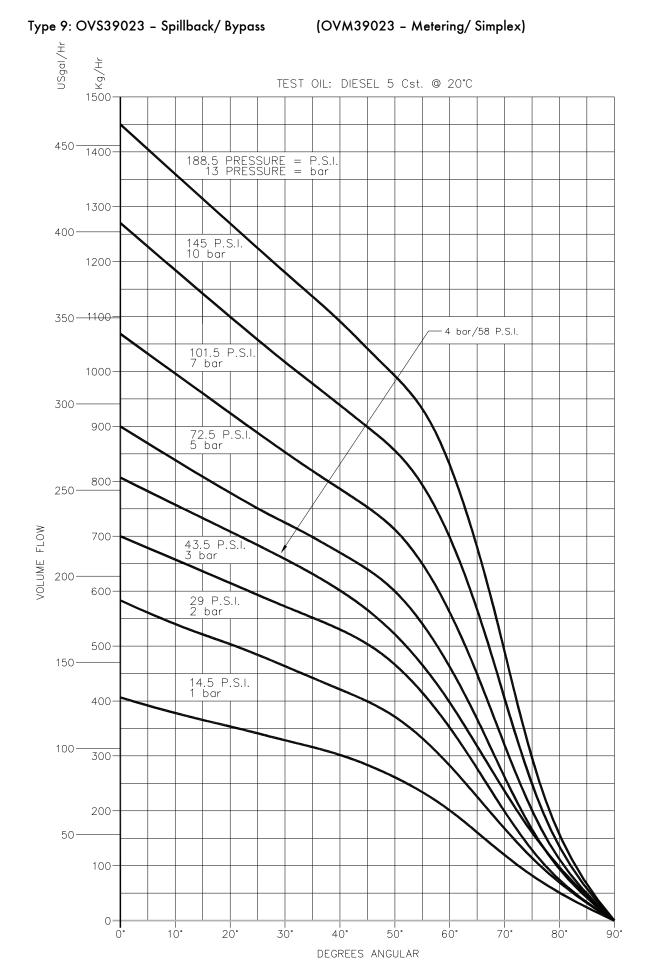








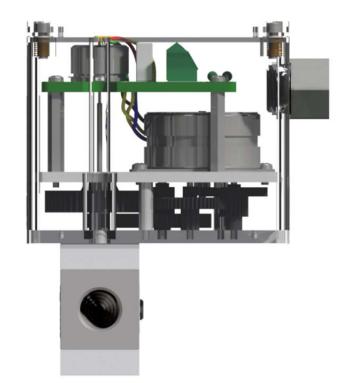


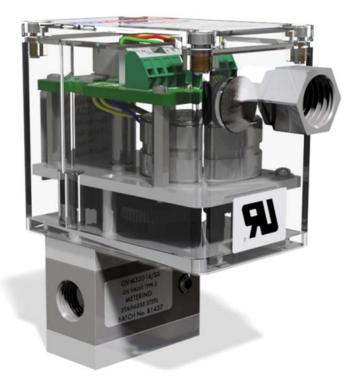


1.2 Oil Valves

All of the Autoflame oil valves (types 1-9) can be supplied as spillback/bypass or metering/simplex. There are many different oil valves available, metering and spillback valves. Each valve has different flow characteristics. It is important to ensure the correct oil valve selection for the application, otherwise the correct input and turndown available for the burner will not be met.

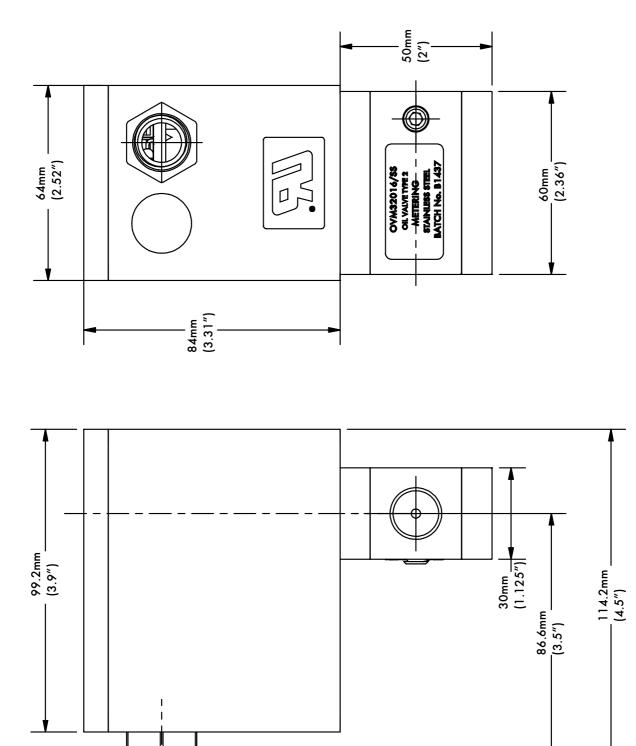
Valve Type	Pipe Thread	Spillback	Metering	Servomotor
1	1/4" BSP (NPT)	OV\$31015	OVM31015	Small
2	3/8″ BSP (NPT)	OV\$32016	OVM32016	Small
3	3/4" BSP (NPT)	OV\$33L17	OVM33L17	Large
4	3/4" BSP (NPT)	OV\$34L18	OVM34L18	Large
5	3/8″ BSP (NPT)	OV\$35019	OVM35019	Small
6	3/8″ BSP (NPT)	OV\$36020	OVM36020	Small
8	3/8″ BSP (NPT)	OV\$38022	OVM38022	Small
9	3/8″ BSP (NPT)	OV\$39023	OVM39023	Small


Note: When using the oil control valve in a dual fuel application (see section 1.5), i.e. gas and oil, if the valves are to be piggy-backed, then the bottom aluminium plate of the oil valve must be removed for assembly with the gas control valve in section 1.3.

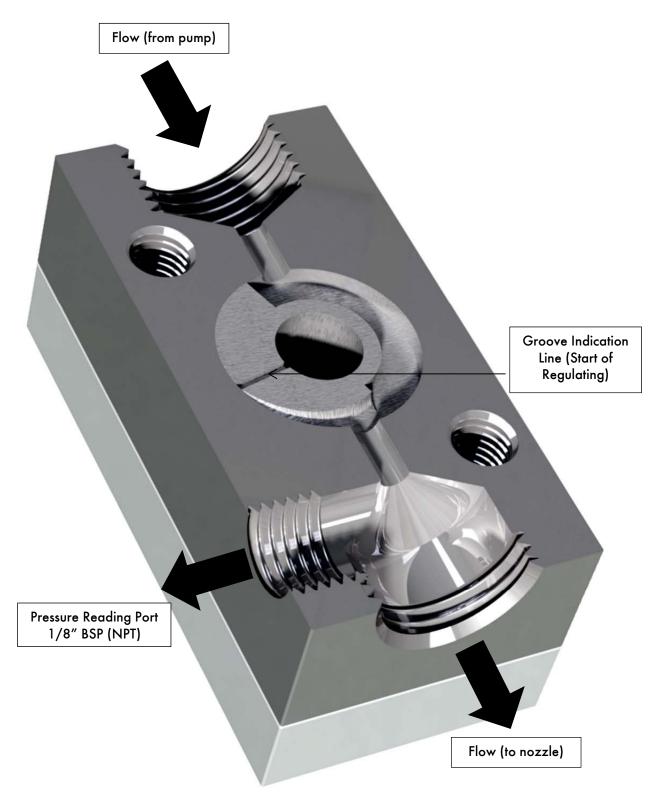

1.2.1 Small Metering/ Simplex Oil Valve

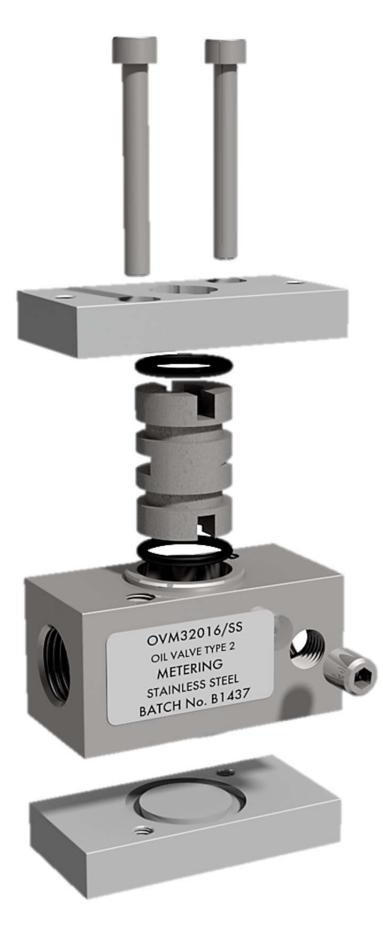
The metering valves are identifiable by the prefix OVM.

Small Metering/ Simplex Oil Valve with Small Servomotor



1 Fuel Control Valves



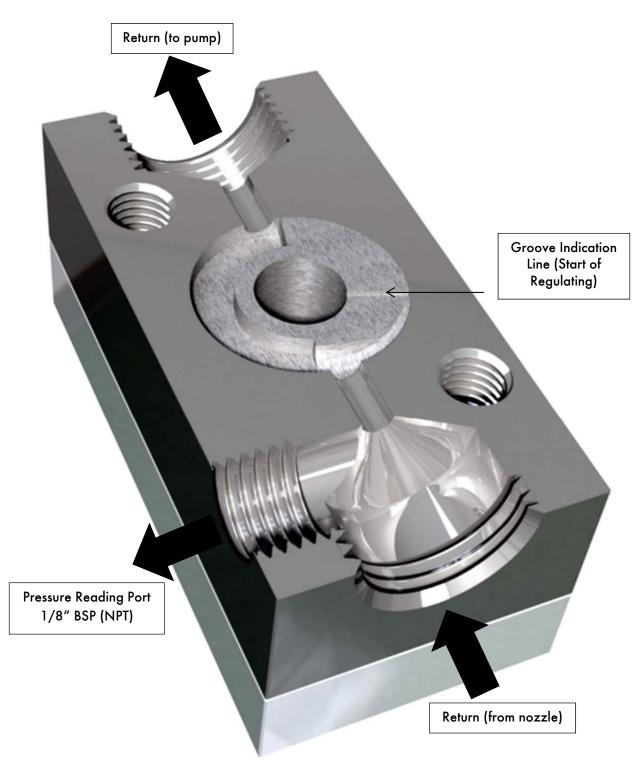

1

1 Fuel Control Valves

Small Metering/ Simplex Oil Valve – Flow

Small Metering/ Simplex Oil Valve – Exploded View

1.2.2 Small Spillback/Bypass Oil Valve


The spillback valves are identifiable by the prefix OVS.

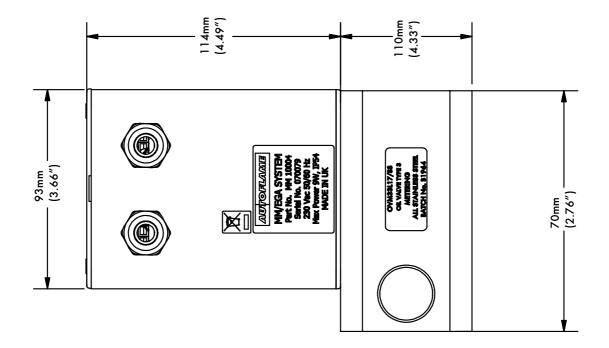
Small Spillback Oil Valve	Height	Width	Depth
mm	50	60	30
Inches	2	2.36	1.125

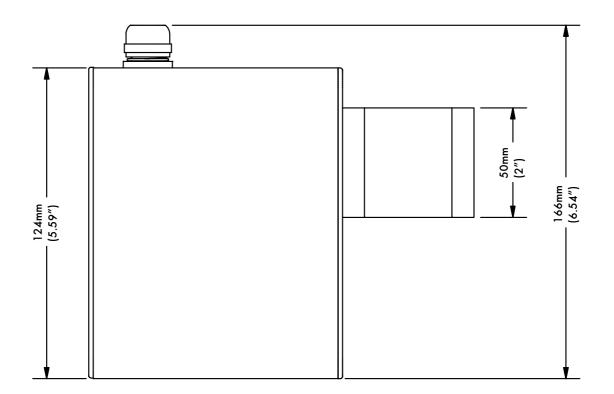
Please see section 1.2.1 for the drawings shown the small spillback valve and servomotor assembled.

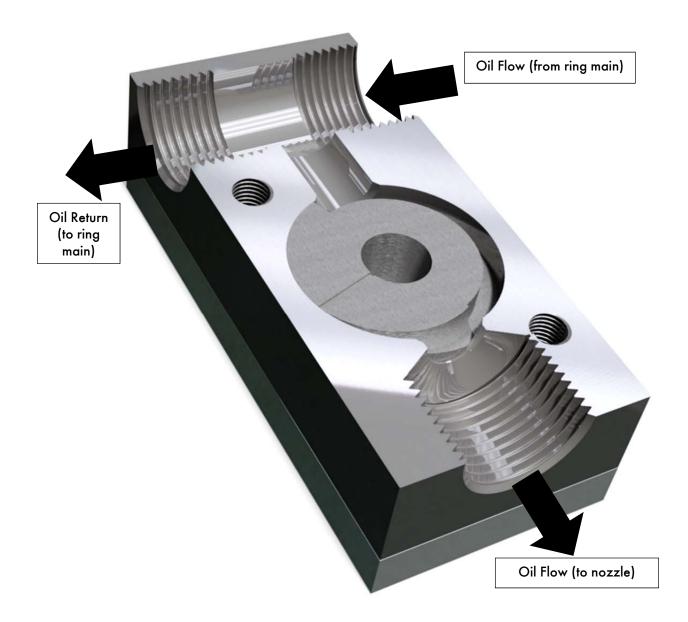
Small Spillback/ Bypass Valve – Flow

Small Spillback/ Bypass Oil Valve – Exploded View

1.2.3 Large Metering/Simplex Oil Valve


Large Metering/ Simplex Oil Valve with Large Servomotor



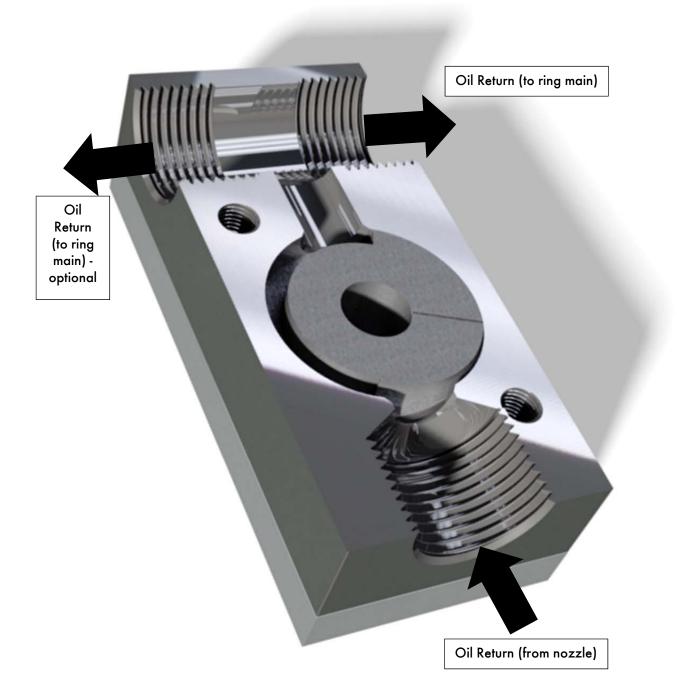

1 Fuel Control Valves

Large Metering/ Simplex Valve with Large Servomotor

Large Metering/ Simplex Oil Valve - Flow

Large Metering/ Simplex Oil Valve – Exploded View

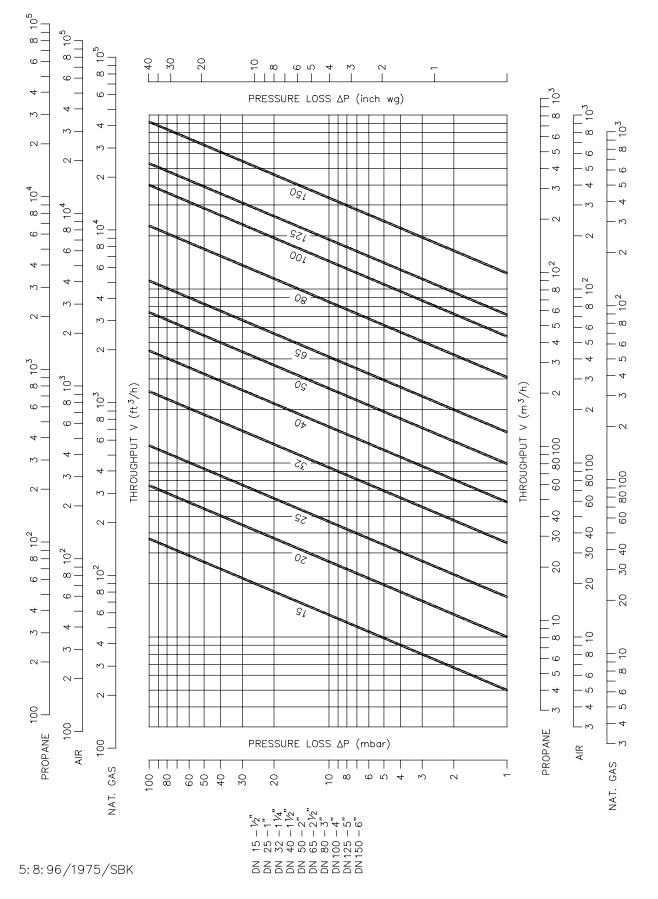
1.2.4 Large Spillback/ Bypass Oil Valve


Large Spillback/ Bypass Oil Valve

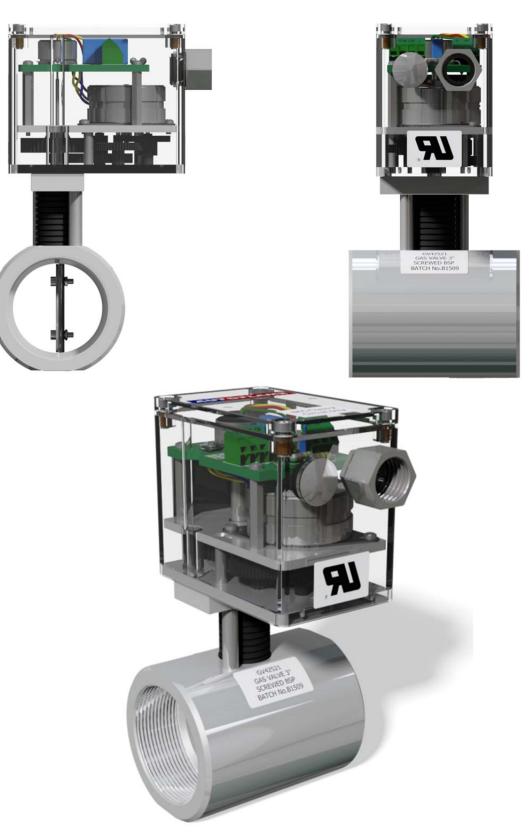
Large Spillback Oil Valve	Height	Width	Depth
mm	50	60	30
Inches	2	2.36	1.125

Please see section 1.2.3 for the drawings shown the large spillback valve and servomotor assembled.

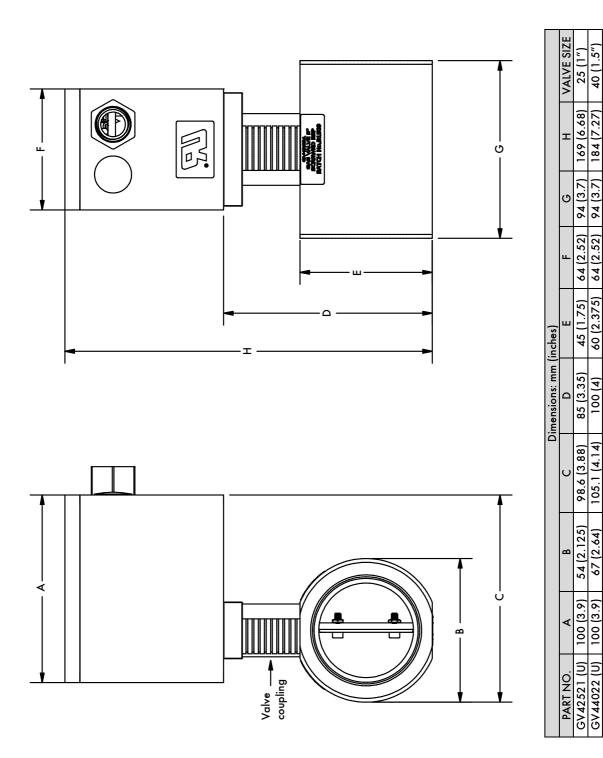
Large Spillback/ Bypass Oil Valve – Flow



Large Spillback/ Bypass Valve – Exploded View


1.3 Gas Valve Sizing

1.3.1 Autoflame Butterfly Valve Flow Data



1.4 Gas Valves

1.4.1 Threaded Gas Valve with Small Servomotor

Threaded Gas Valve with Small Servomotor – Dimensions

<u>50 (2")</u> 65 (2.5")

195 (7.66) 208 (8.25)

94 (3.7)

94 (3.7) 94 (3.7)

64 (2.52) 64 (2.52) 64 (2.52)

70 (2.75) 85 (3.35)

110 (4.375)

109.6 (4.31)

116.6 (4.59)

124 (5)

100 (4)

140 (5.5)

124.1 (4.88)

105 (4.125)

100 (3.9)

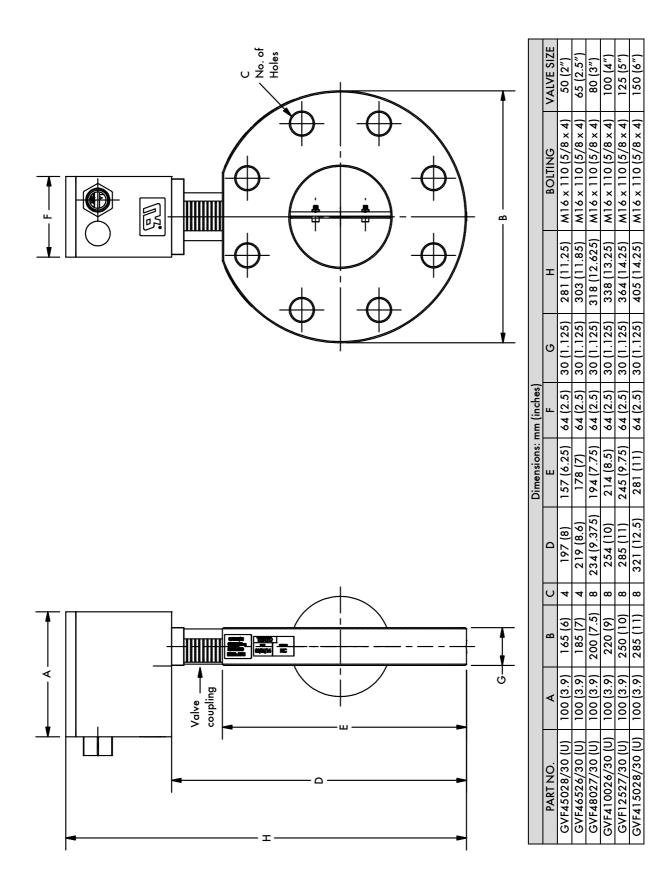
GV48025 (U)

76 (3) 90 (3.5)

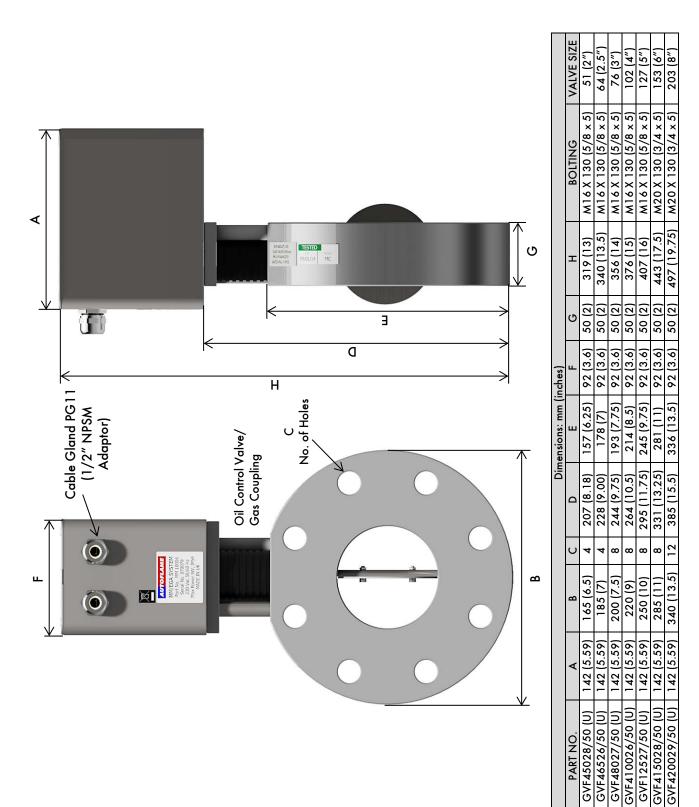
100 (3.9) 100 (3.9)

GV45023 (U)

GV46524 (U)


80 (3″)

224 (8.84)


1.4.2 Flanged 30mm Thick Gas Valve with Small Servomotor

Drawing No. 9016

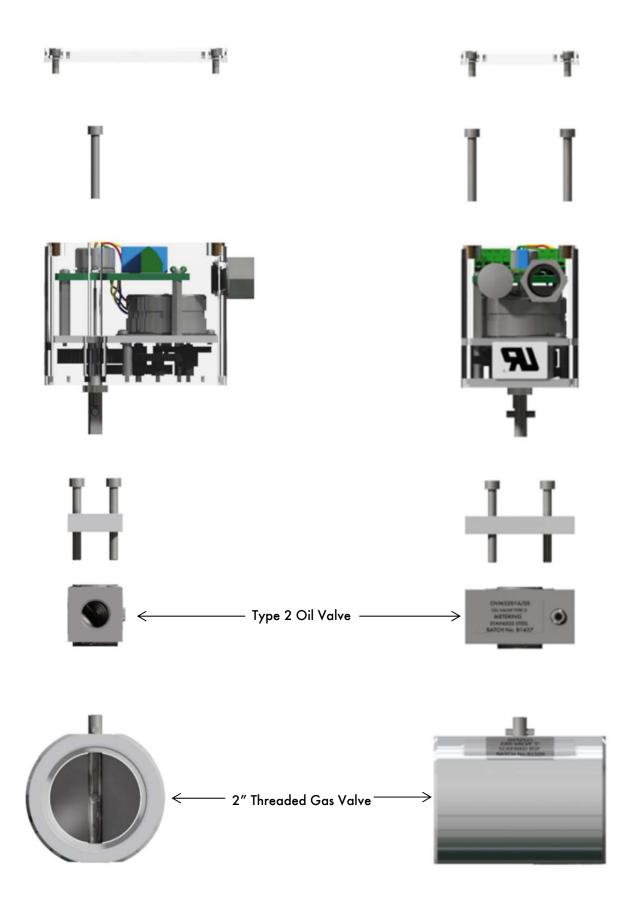
1.4.3 Flanged 50mm Thick Gas Valve with Large Servomotor

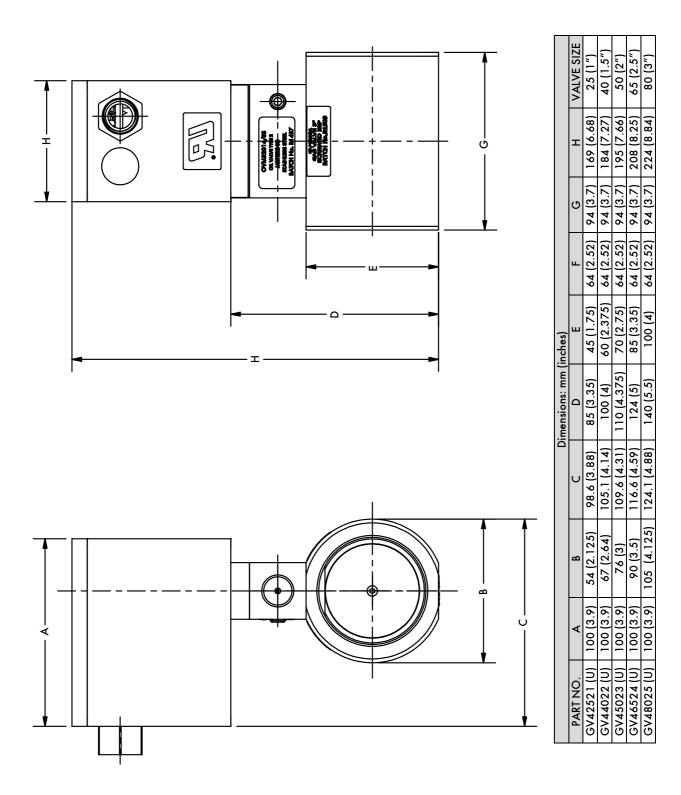
Flanged 50mm Thick Gas Valve with Large Servomotor – Dimensions

1.5 Piggy-Back Assembly

1.5.1 Threaded Gas Valve with Oil Valve

The example shown below shows the design behind utilising one servomotor for both the gas and oil valve. This shows a Type 2 oil valve with a 2" threaded gas valve using one small servomotor.



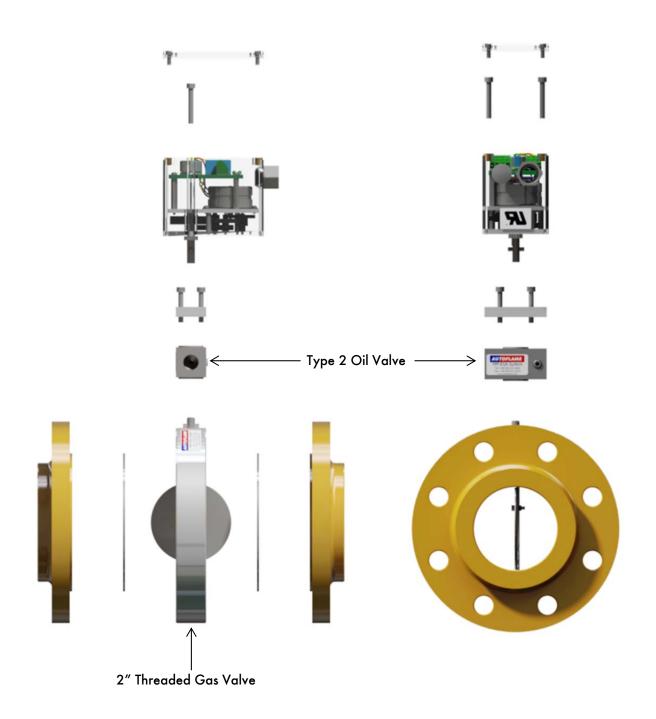

Drawing No. 9018

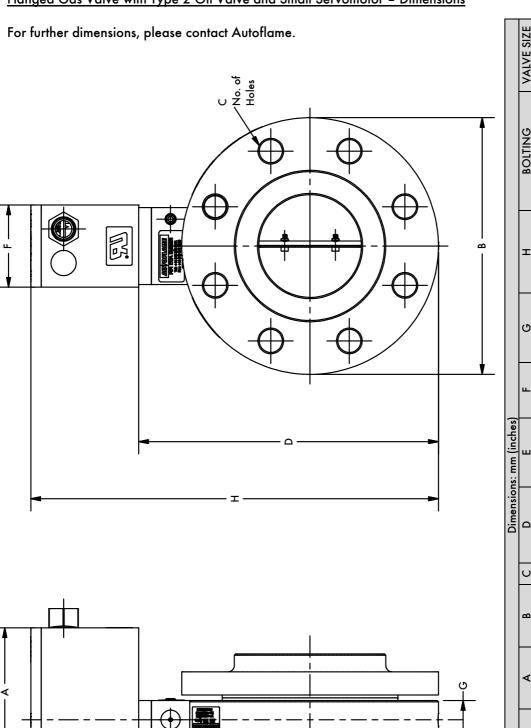
Threaded Gas Valve with Type 2 Oil Valve and Small Servomotor – Exploded View

1 Fuel Control Valves

For further dimensions, please contact Autoflame.

03.09.2015


1.5.2 Flanged Gas Valve and Oil Valve


The example shown below shows the design behind utilising one servomotor for both the gas and oil valve. This shows a Type 2 oil valve with a PN16 flanged gas valve (3") using one small servomotor.

Drawing No. 9019

Flanged Gas Valve with Type 2 Oil Valve and Small Servomotor – Exploded View

Flanged Gas Valve with Type 2 Oil Valve and Small Servomotor – Dimensions

I

1

OVM35019 (OVS) OVM32016 (OVS)

65 (2.5"

50 (2")

M16 × 110 (5/8 × 4) M16 × 110 (5/8 × 4)

281 (11.25)

(1.125) 30 (1.125) 30 (1.125)

64 (2.5) (2.5) 64 (2.5)

(6.25)

64 (

178 (7 157 (

219 (8.5) 197 (8)

194 (7.75)

234 (9.375)

œ

200 (7.5)

254 (10) 285 (11

8 ω

220 (9)

250 (10) 285 (11)

ტ 30 (

ц

Δ

J

4 4

9 Ŀ 185 (165 (ഫ

> 100 (3.9) 100 (3.9) 1 00 (3.9) 100 (3.9) 100 (3.9) 100 (3.9)

OVM31015 (OVS) - GVF45038/30 (U

PART NO.

- GVF46526/30 (U) - GVF48027/30 (U)

∢

Т

303 (11.85

BOLTING

125 (5")

150 (6"

M20 × 110 (3/4 × 4)

405 (15.75) 364 (14.25)

M16 × 110 (5/8 × 4)

1 00 (4"

M16 × 110 (5/8 × 4)

80 (3"

(5/8 × 4)

M16 × 110 (

318 (12.625 338 (13.25)

(1.125)

30 (

(2.5)

64 (

30 (1.125) 30 (1.125)

ŝ 64 (2.5) 64 (2.3

245 (9.75) 214 (8.5)

281 (11)

321 (12.5)

ω

OVM39023 (OVS) - GVF415028/30 (U) OVM38022 (OVS) - GVF412527/30 (U) OVM36020 (OVS) - GVF410026/30 (U)

1.6 FGR Valves

FGR Valve with Large Servomotor

Part Number	Valve Type	Valve Size	Thickness
FGR 410026/50	PN16	100mm (4″)	50mm
FGR 415028/50	PN16	150mm (6″)	50mm
FGR 420029/50	PN16	200mm (8")	50mm
FGR 425030/50	PN16	250mm (10")	50mm
FGR 430031/50	PN16	300mm (12")	50mm
FGR 410026/50U	ANSI 150lb	100mm (4″)	50mm
FGR 415028/50U	ANSI 150lb	150mm (6″)	50mm
FGR 420029/50U	ANSI 150lb	200mm (8″)	50mm
FGR 425030/50U	ANSI 150lb	250mm (10")	50mm
FGR 430031/50U	ANSI 150lb	300mm (12")	50mm

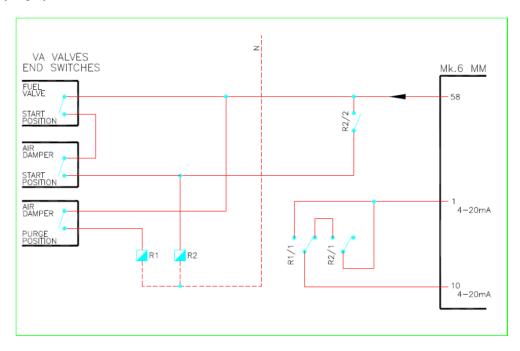
For dimensions of the FGR valves please contact Autoflame.

1.7 Purge and Start Position Proving

1.7.1 Mk7 M.M. Purge and Start Position Proving

In some situations is it necessary to have an additional safety check to ensure that the servomotors, fuel valves and air dampers are in the correct position for purge and start/low fire. A cam and send switch can be placed directly on the opposite end of the Autoflame gas and oil valves. One end switch proving unit (part no. MM70009PPU) is required per valve and air damper, as well as an air damper mounting kit (part no. MM70009UMK).

For new installations, the gas and oil valves should be ordered with a suffix /VA following the standard valve part number. The end proving switch unit is not included with the gas and oil valves and should be ordered separately.


To retrofit an end switch proving unit onto an existing gas valve, the gas valve will need to be sent back to Autoflame. To retrofit an end switch proving unit onto an existing oil valve, a base mounting plate (part no. MM70009OVSM or MM70009OVLRG) and an air damper mounting kit (part no. MM70009UMK) are required as well.

<u>Operation</u>

- If purge position switches are not made during start-up, then the system will stay at position to purge until the switch is made.
- If the start position switches are not made, then the system will stay at position to purge until the switch is made.
- Once the system is firing, the switches will be bypassed using terminal 58 until the system stop firing and will be in operation again after recycling.

Installation

Install the switches as below and wire the end switches into the spare VSD channel terminals on the Mk7 M.M. If using more than one switch assembly, all low position switches should be wired in series and all purge position switches should also be wired in series.

Once the switch assemblies have been mounted and wired follow the standard setup procedure for commission as stated in Mk7 Manual: M.M. Installation and Commissioning Guide.

1.7.2 Mini Mk8 M.M. End Limit Switches

Options/ parameters 154, 155 and 156 have been added to set the function of terminals 80, 81 and 82, respectively. Terminal 80 is used for start position interlock, night setback input, and reduced setpoint input. Terminal 81 is used for purge interlock and low flame hold input. Terminal 82 is used for warming stat and valve proving mains input. Proving valves (end switch) provide a secondary confirmation that a valve has reached a predefined position.

To install the End Limit Switches,

- 1. Mount the servomotor onto the valve and ensure the potentiometer reads the correct position on the M.M. for the "CLOSED" and "OPEN" valve positions.
- 2. Mount the End Switch Proving Unit (E.S.P.U.). The servomotor may have to be moved to a suitable position in order to allow the E.S.P.U. to be attached to the valve.
- 3. Undo the End Limit Switch holding screws.
- 4. Adjust the position of CAM corresponding to switches 1 (S1) and 2 (S2) by loosening the CAM screws and move to the required position.
- 5. Wire the ESPU according to the Valve Proving the End Limit Switch will be required to provide. See the End Limit Switch wiring diagram in Figure 1.7.2.i

Note: The use of these switches is determined by the application approval necessary. These are not required to meet UL, FM or CE.

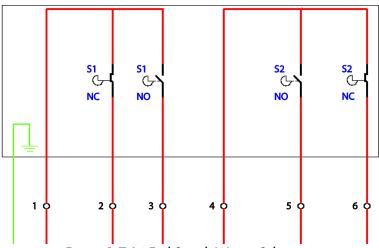
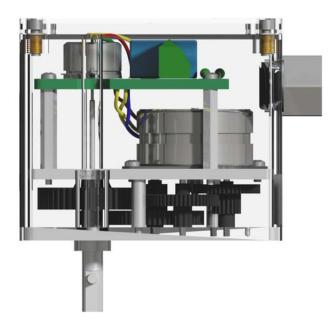
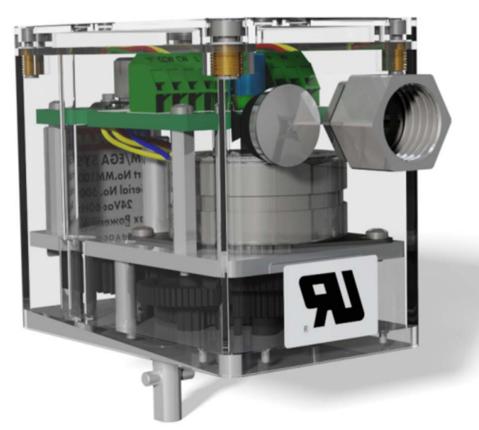


Figure 1.7.2.i End Switch Wiring Schematic

End Limit Switches are mounted on the end of bespoke valves (please contact Autoflame regarding bespoke valve manufacture) which are attached to the air and fuel valve and commissioned depending on the use of the End Limit Switches. An End Limit Switch comprises of two switches, as shown in Figure 1.7.2.i. Each comprises of an Earth and 6 connections to be wired as appropriate. The switches S1 and S2 are setup as per on site specification. These are then wired into either or both of the terminals 80, the start position interlock, and terminal 81 purge interlock.

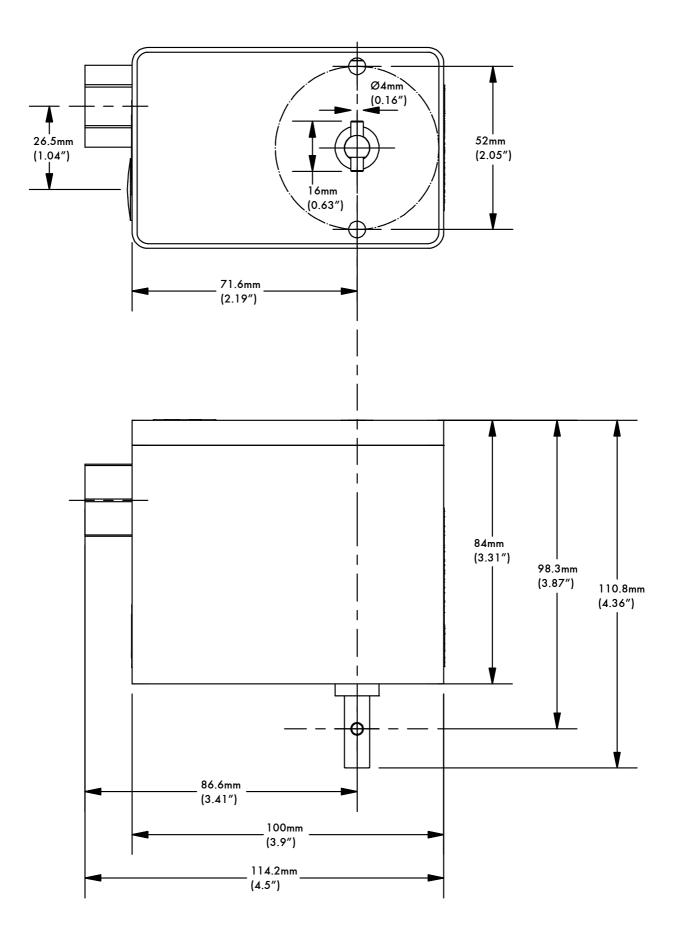

If option/ parameter 154 is set to 1, then the M.M. waits at RUN TO IGNITION until this interlock is made on terminal 80. If option/ parameter 155 is set to 1 then M.M. waits at RUN TO PURGE until this interlock is made on terminal 81.

If option/ parameter 154 is set to 2, terminal 80 is the night setback input (night setback offset must be set in option 85). If it is set to 3, terminal 80 is used for reduced setpoint input. If option/ parameter 155 is set to 2, terminal 81 is used for the low flame hold input. If option/ parameter 156 is set to 0, than terminal 82 is used for the warming stat for sequencing. If it is set to 1, terminal 82 is used for the valve proving mains input (see option/ parameter 128).

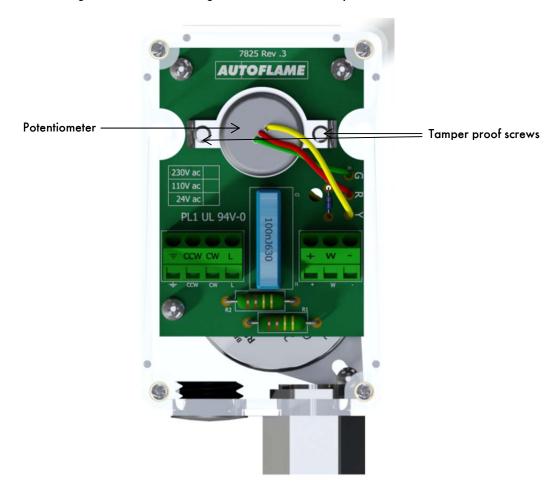

2 SERVOMOTORS

2.1 Small Servomotor

All small servomotors are supplied with PG11 cable glands, except for 24V small servomotors which are supplied with $1\!/\!2''$ NPSM adaptor.

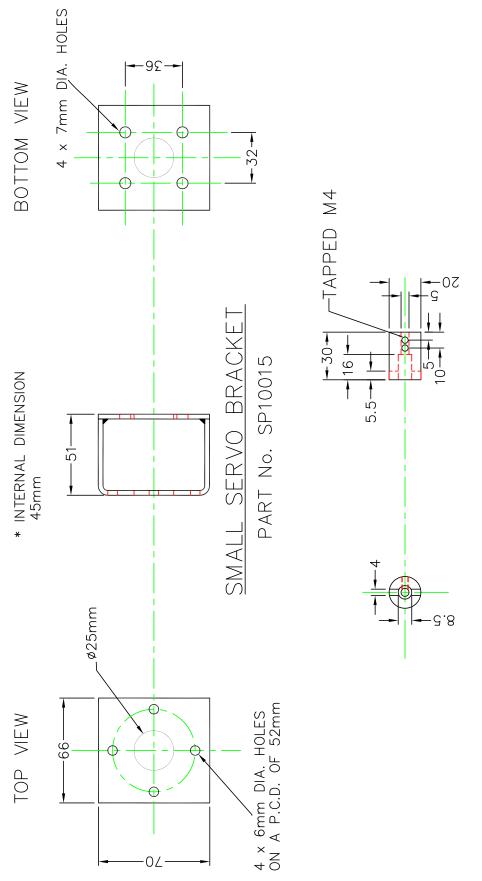


Drawing No. 9020


2 Servomotors

Small Servomotor – Dimensions

Servomotors must only be installed and adjusted by an Autoflame certified technical engineer.


To adjust the potentiometer, loosen the tamper proof screws using a tamper proof screwdriver available from Autoflame. Use fingers only to adjust the position of the potentiometer. After adjustment, ensure tightness, do not over tighten. Do not raise the potentiometer from the PCB.

Specification				
Supply voltage	24V/ 230V/ 110V, 50Hz/60Hz			
Output shaft torque	4Nm (3ft lbs)			
Operating angle	0 - 90°			
Max rated power	3W			
Ambient temperature	0°C to 60°C (32°F to 140°F)			
Industrial protection rating	IP54, NEMA13			
Mounting angle	360 °			
Positioning	M.M. Drive			
Drive motor	Synchronous			
Body material	High impact acrylonitrile butadiene styrene (ABS)			
Gear material	Polyoxymethylene			
Weight	0.57kg			
Dimension	100 x 84 x 65.5mm			
Wiring connection (230V)	PG11 gland			
Wiring connection (24V)	1⁄2" conduit aaptot (blanking plug)			
Lid screws	4 x M4x10 Stainless steel socket head			
Lid screw torque	0.2 0 0.4 Nm			
Body mounting screws	2 x M5x25 Stainless socket head			
Body mounting torque	1.2 – 2.6 Nm			

2.1.1 Small Servomotor Mounting Bracket and Coupling

Small Servomotor Mounting Bracket and Coupling – Dimensions

2 Servomotors

Drawing No. 4716-A

PART No. SP10015/C (COUPLING ONLY)

SMALL SERVO COUPLING

2.1.2 Servomotors – Direction Change

MOTOR CLOCKWISE ROTATION

M.M. MODULE

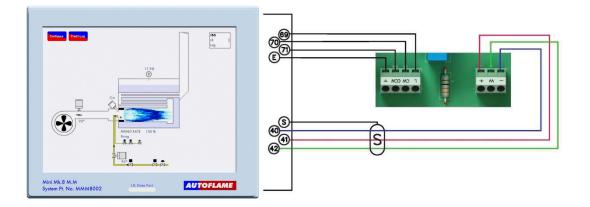
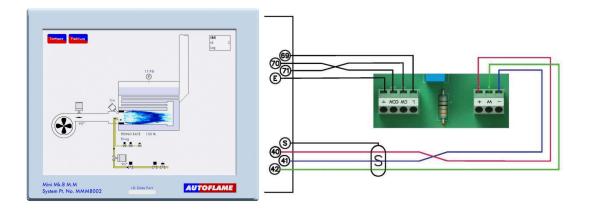
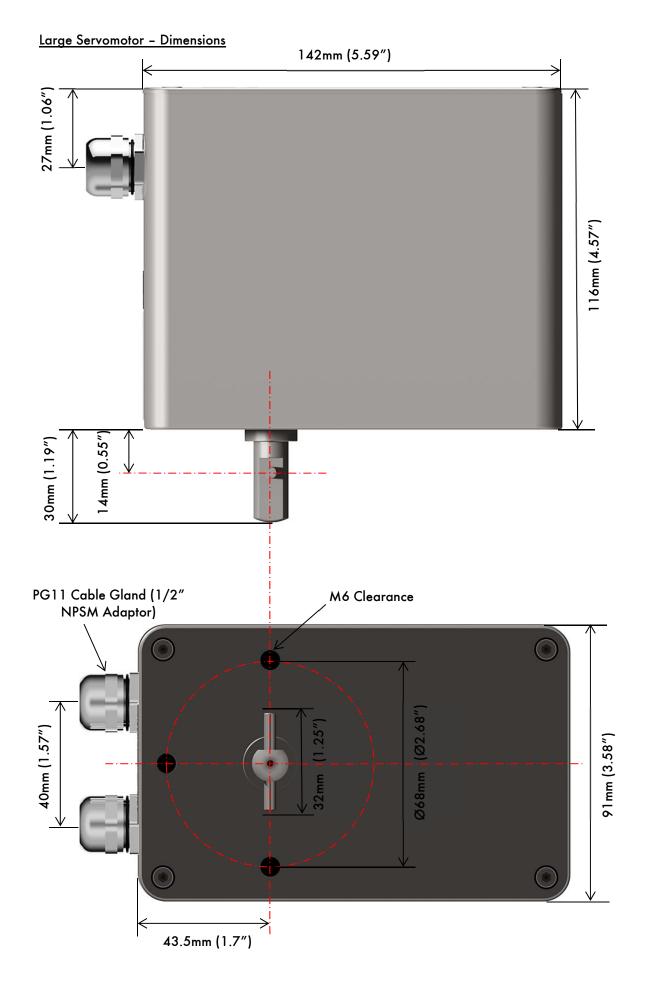



FIG. B

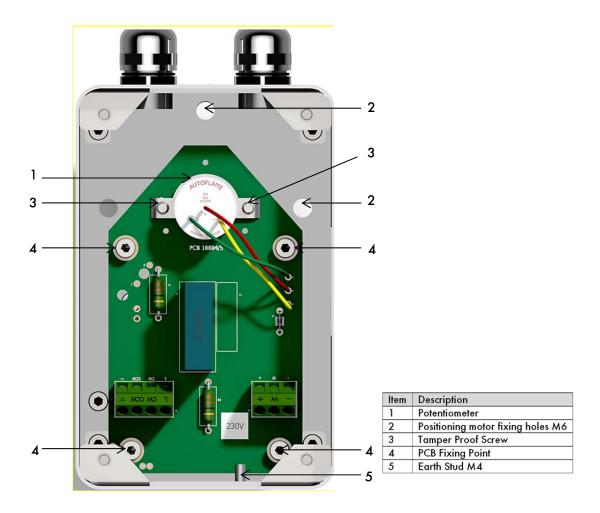
MOTOR ANTICLOCKWISE ROTATION

M.M. MODULE

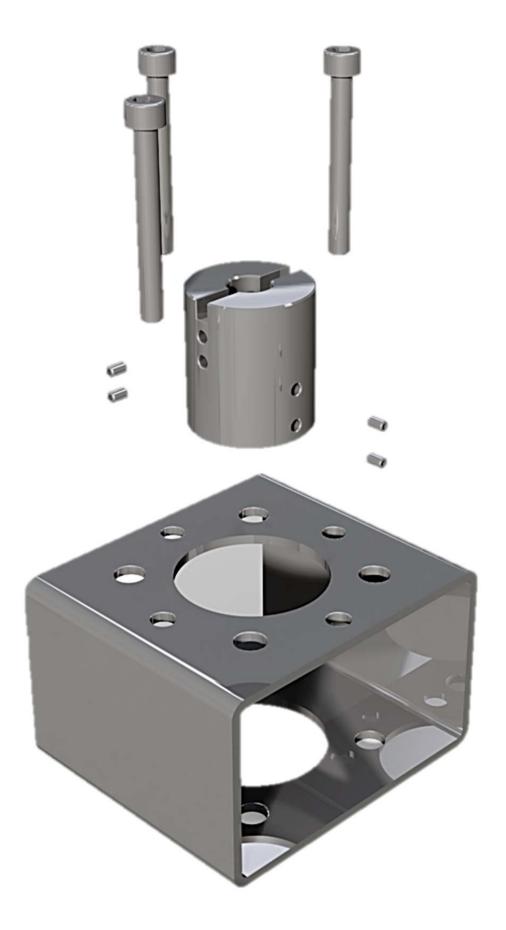

FOR ILLUSTRATION PURPOSES FUEL MOTOR CONNECTIONS ARE SHOWN.

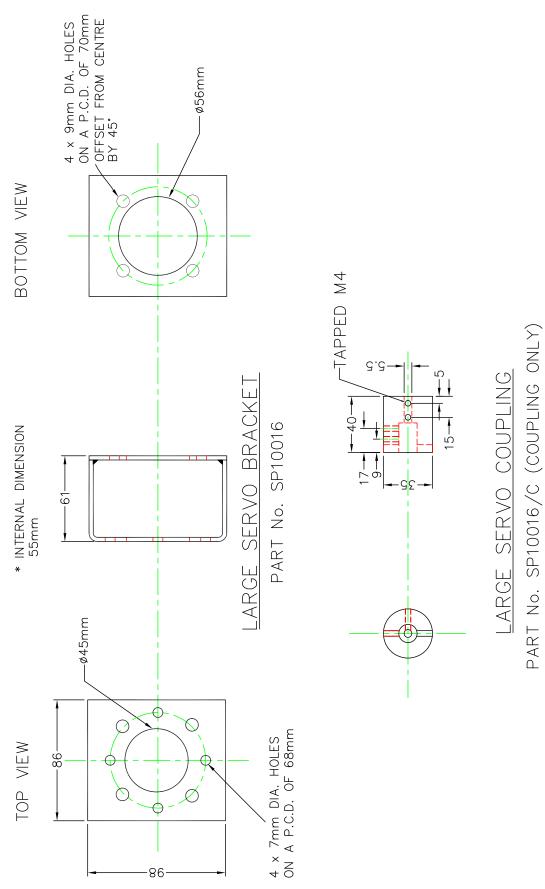
Drawing shows direction change for small and large servomotors, and Mini Mk8 M.M. and Mk7 M.M.

2.2 Large Servomotor



2 Servomotors


Note: Servomotors must only be installed and adjusted by an Autoflame certified technical engineer.


To adjust the potentiometer, loosen the tamper proof screws using a tamper proof screwdriver available from Autoflame. Use fingers only to adjust the position of the potentiometer. After adjustment, ensure tightness, do not over tighten. Do not raise the potentiometer from the PCB.

Specification				
Supply Voltage	24/230V, 50/60Hz			
Output Shaft Torque	25Nm/18ft lbs			
Operating Angle	0-90°			
Operating Time	Nominal 30 seconds			
Max Power Rated	9W			
Ambient Temperature	0°C to 60°C/32°F to			
	140°F			
Industrial Protection Rating	IP54/NEMA 13			
Mounting Angle	360°			
Positioning	MM Drive			
Drive Motor	Synchronous			
Body Material	Mild Steel CR4			
Coating	Interpon 700 Powder Coat			
Weight	1.85kg			
Dimensions	142x116x91mm			
Wiring Connection (230V)	PG11 Gland			
Wiring Connection (24V)	¹ / ₂ " Conduit adaptor/			
	blanking plug			

2.2.1 Large Servomotor Mounting Bracket and Coupling

2 Servomotors

Drawing No. 4716-B

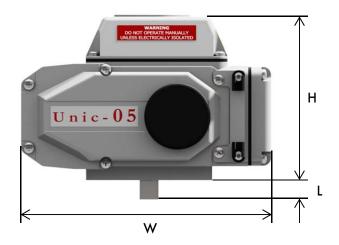
2.3 Industrial Servomotor

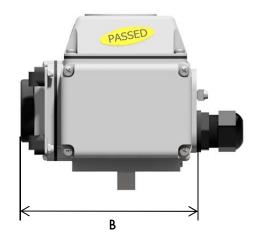
2.3.1 Overview

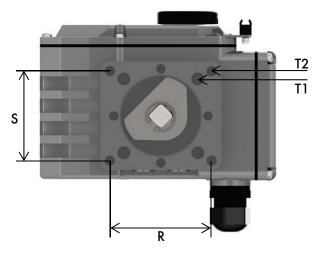
The industrial servomotor is a rotary type electric actuator, suitable for use with the M.M. module. The body is made with die-cast aluminium, and it is light, compact, highly efficient and powerful.

Features:

- Light and compact
- Easy to handle and suitable for use in narrow spaces
- Simple structure design
- Trouble-free mounting on air damper, maintenance and testing
- Manual operation function crank handle supplied with the servomotor
- Manual operation is only possible when the power is discontinued, with the attached manual crank handle. If manual operation is performed whilst the unit has power, this will cause damage.
- Protect function
- Thermal protector is built in to prevent motor burnout by overloading.
- Easy for wiring
- Connection is simplified by using a terminal block inside




2.3.2 External Drawings



Number	Name
1	Body
2	Drive unit cover
3	Autoflame feedback potentiometer
4	Power instruments cover
5	Control unit/terminal strip cover
6	Output shaft
7	Manual handle shaft
8	Cord lock for conduit connection

2.3.3 Dimensions

Metric Units:

Part Number	Torque	Dimensions		Shaft			Dimensions			
	Nm	W	Н	В	L	A/F	R	S	T1	T2
MM10070 -Unic 05	39.2	159	111	115	12	12	68	60	M8	M6
MM10072 -Unic 10	98	208	137	123	16.5	15	82	70	M8	M6
MM10074 -Unic 20	126	257	145	157	26.5	23	118	84	M10	M10
MM10078 -Unic 40	392	257	145	157	26.5	23	118	84	M10	M10

Imperial Units:

Part Number	Torque	Dimensions		Shaft			Mounting			
	ft lbs	W	Н	В	L	A/F	R	S	T1	T2
MM10070 -Unic 05	29	6.26	4.37	4.53	0.47	0.47	2.68	2.36	M8	M6
MM10072 -Unic 10	72	8.19	5.39	4.84	0.65	0.59	3.23	2.76	M8	M6
MM10074 -Unic 20	144	10.12	5.71	6.18	1.04	0.91	4.65	3.31	M10	M10
MM10078 -Unic 40	289	10.12	5.71	6.18	1.04	0.91	4.65	3.31	M10	M10

2.3.4	Specifications

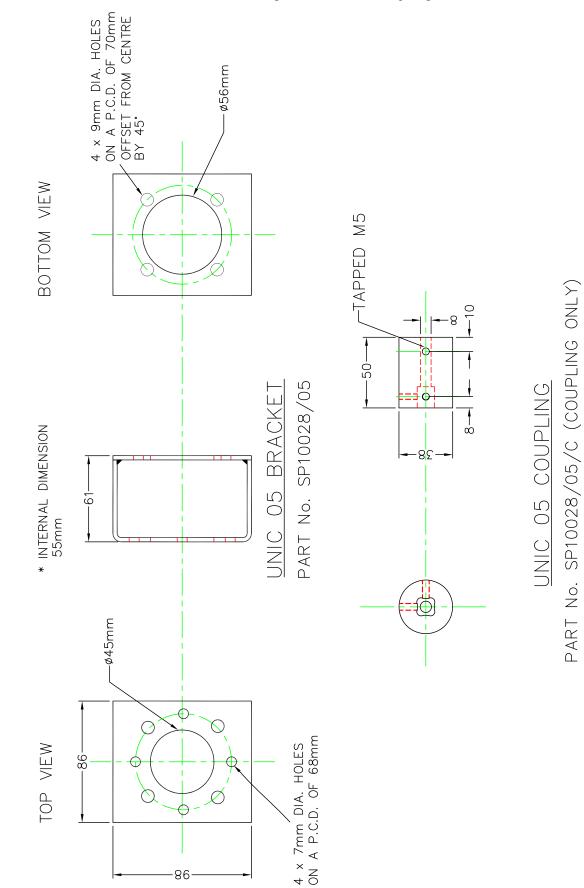
2.3.4 Specifications	
ltem Power	Specification 220/240VAC 50/60Hz 110VAC 60 Hz
Output Shaft Torque	MM10070 - 39.2Nm (29 Lb.ft) MM10072 - 98Nm (72 Lb.ft) MM10074 - 196Nm (144 Lb.ft) MM10078 - 392Nm (289 Lb.ft)
Operating Angle Operating Time Protect System Ambient Temperature	0 - 90 degrees 15 - 30 seconds/ 50Hz (nominal) Thermal protector built in -25°C - 55°C (-13F - 131F)
Rated Current	MM10070 - 0.4A/ 200V (0.75A/ 100V) MM10072 - 0.3A/ 200V (0.6A/ 100V) MM10074 - 0.45A/ 200V (1A/ 100V) MM10078 - 0.9A/ 200V (2A/ 100V)
Insulation Resistance Withstand Voltage Manual Operation Stopper Enclosure Mounting Angle Positioning	100Mohm/ 500VDC 1500VAC/ minute Crank handle attached Mechanical stopper - open/ close adjustable IP65/ NEMA4 360 degrees - all directions M.M drive
Drive Motor	MM10070 - 8W (E type) MM10072 - 20W (E type) MM10074 - 30W (E type) MM10078 - 90W (E type)
Body material Coating	Die cast aluminium ADC - 12 Baking varnish
Weight	MM10070 - 2Kg (4.4lbs) MM10072 - 4.5Kg (9.9lbs) MM10074 - 9Kg (19.8lbs) MM10078 - 9.5Kg (20.9lbs)
Wiring Conduit	1⁄2″ NPT

The industrial servomotor is available as explosion proof with ATEX approval for hazardous environments:

Industrial Servomotor Unic 10, 230V	98Nm, 72 ft lbs. Ex nA nL IIC T4	MM10072/EXP
Industrial Servomotor Unic 10, 120V	98Nm, 72 ft lbs. Ex nA nL IIC T4	MM10072/110/EXP

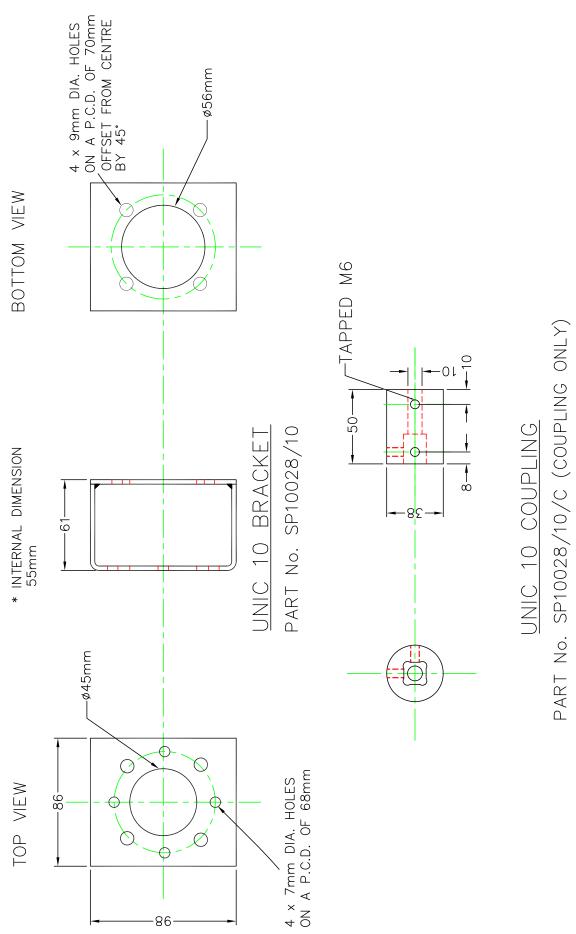
2.3.5 Installation

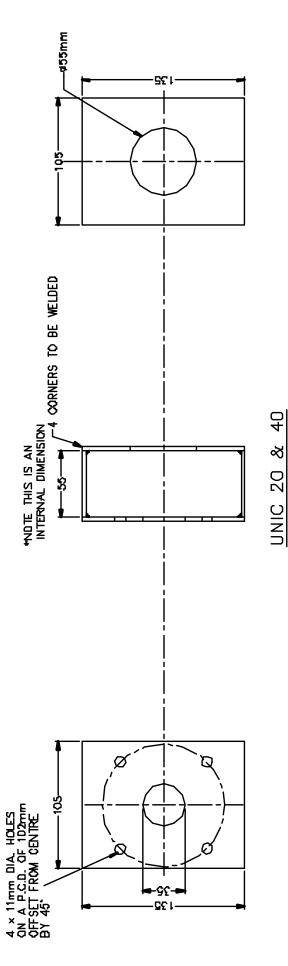
The Autoflame product must only be installed, set-up, commissioned and adjusted by an Autoflame certified technical engineer.


Positioning:

- Ambient temperature: -25°C to +55°C (-13°F to +131°F). Avoid hazardous ambient conditions.
- Depending on the condition of the installation, reserve spaces for the wiring conduit cover must be considered, in addition to manual maintenance works.

Mounting on Air Damper:




- 1. Ensure that the industrial servomotor is not powered before making manual operations.
- 2. Move the damper by hand and make sure that it is free. Then set it at the closed position. Make sure that the shaft is smooth in motion and there is no decentring/ inclination, by turning the manual handle.
- 3. Using the Autoflame supplied industrial servomotor mounting brackets, mount the servomotor to the bracket and secure. Then mount this assembly to the damper or value ensuring that the damper or value is in the fully closed position and then tighten the bolts and make sure that the assembly is fully secure.

2.3.6 Industrial Servomotor Mounting Bracket and Coupling – Dimensions

2 Servomotors

Drawing No. 4098

2.3.7 Manual Operation

Before starting manual operation check that the power source is switched off.

Remove rubber cap of the drive unit and insert the manual handle level into the hexagonal hole.

Turn the manual handle clockwise and the shaft moves in the CLOSE direction.

Turn the manual handle counter clockwise and the shaft moves in the OPEN direction.

Note:

Do not over-turn the handle with excessive strengths; as otherwise, it may cause problems with the other parts on the servomotor. Any excessive force may damage the servomotor. If power is not removed then the servomotor will try to return to the original position during manual operation. This may damage the servomotor and may cause physical injury.

Dimensions of Manual Handle

Opposite sides of hexagon shaft	MM10070/ MM10072	5mm
	MM10074/ MM10078	6mm
Length of handle	15mm	
	MM10070/ MM10072	100mm
	MM10074/ MM10078	120mm

Maintenance

- Lubrication: Since the unit is sufficiently lubricated for long life, and pressure proof with di-sulfied molybdenum grease (MOS2), no further lubrication is required.
- Periodical Test: In case the motor is very seldom rotated or after a long period of rest, it is suggested to have a periodical test and check if there is no irregularity. Remove power to the servomotor, and check manual operation as described above. Check wiring and visually inspect the integrity of the valve.

2.3.8 Troubleshooting

If the motor does not rotate electrically, one of the following could be the cause:

- Power is switched off check live supply voltage
- Wire/terminals are disconnected replace wire or properly connect on terminals
- Supply voltage is too low/high or incorrect check the voltage with a meter
- No switched neutral remove switched neutral connection and wire link to earth for both directions
- Effect of the terminal protector (due to a high/low ambient temperature or blocked damper) lower/raise the ambient temperature or manually open/close the damper when power is removed from the motor

2.3.9 Industrial Servomotors – 4-20mA

The Unic industrial servomotors are available in 4-20mA versions, which enable the servomotors to be controlled via an analogue 4-20mA signal from the M.M.

The Mk7 M.M. has 7 channels of which channel 2 is used for air, and channel 7 is used for draft control with an expansion board. Channels 1, 3 and 4 can be used to control fuel valves and air dampers. Channels 5 and 6 can be used to control the VSD or Unic 4-20mA industrial servomotor via an analogue 4-20mA input and output. The Mini Mk8 M.M. has 4 channels, of which channel 2 is used for air. Channel 4 can be used to control the VSD or Unic 4-20mA industrial servomotor via an analogue 4-20mA input and output.

The servomotor would receive the 4-20mA via the VSD terminals on the M.M. (terminals 1-6 on the Mk7 M.M., and 1-12 on the Mini Mk8 M.M.)

2.4 Servicing Servomotors

It is good practice to check the Autoflame equipment periodically for the integrity of the installation. An important aspect of the system installation is the mechanical assemblies associated with the servomotors i.e. mounting brackets and couplings. The servomotor checks should include:

- Overall mechanical soundness look for corrosion or mechanical damage
- Couplings and associated linkages should be tight
- Any associated set screws and fixings should be secure
- Mechanical pins (roll pins, split pins) should not show corrosion and fatigue
- When the burner is off and power has been securely isolated, remove the servomotor from the damper/valve and ensure that the damper/valve does not require excessive torque to operate. Make sure the servomotor is working within its recommended torque rating.

It is good practice to follow these guides:

- Do not stand on the servomotors as this may cause internal damage to the PCB and potentiometer leading to a system failure
- Do not remove the PCB inside the servomotor as this will affect the integrity of the repeatability, and also void any warranty that may apply to the unit
- Unless the servomotor has been supplied with NEMA4 (IP65) fixings, it is important that the servomotor is not subjected to an environmental condition exceeding the standard NEMA14 (IP54) rating.

2.4.1 Servomotor Torque

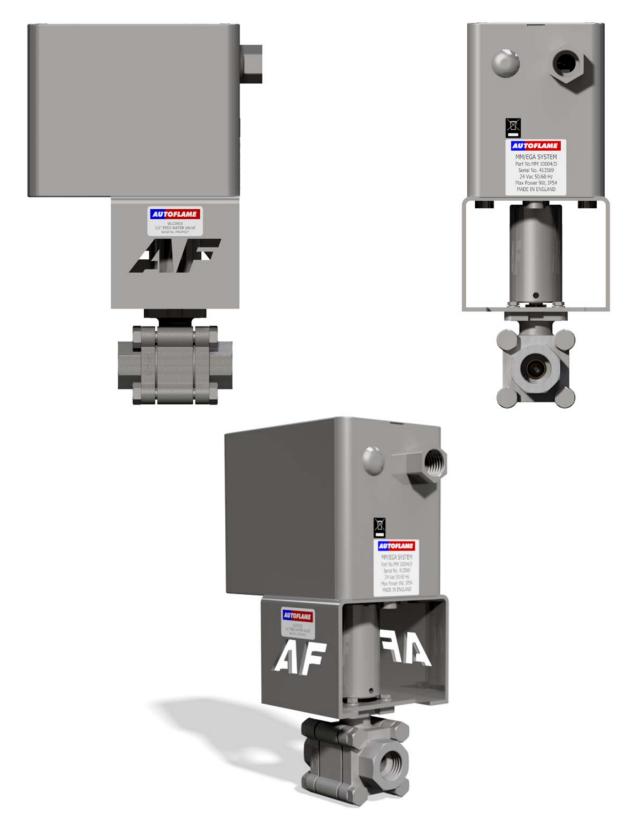
The servomotors will generate torque level in excess of the stated amount in the parts list, however the servomotors should be kept within the given torque levels for safety.

It is imperative that the damper or valve being controlled by the servomotor is tested using a torque meter to ascertain the torque requirement. In both cases the valve or damper must be tested with a realistic loading i.e. with air or gas pressure applied to the valve or damper. It is recommended that a nominal 20% is added to the measured torque value to determine the type of servomotor required for the application. This nominal 20% will take into account any environmental factors such as dust or moisture experienced between service intervals.

The Autoflame system will indicate an error condition in a normal operating condition when the servomotor torque levels are exceeded. However, in the unlikely event of the combustion parameters changing outside the control of the system e.g. sudden gas pressure change, calorific fuel variation or any other boiler related problems, a rapid change in a combustion process (explosion) may be experienced leading to mechanical damage or personal injury. Therefore it is important that the burner and M.M. are serviced on a regular basis by a factory trained certified technician.

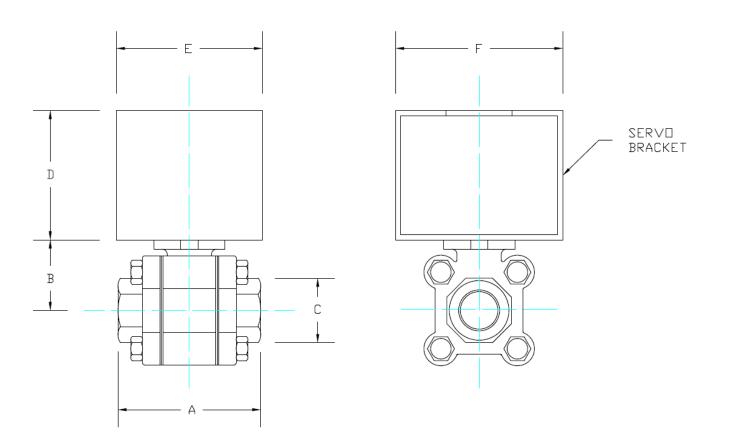
3 WATER LEVEL VALVES

Water valves are universal for feedwater, TDS, and bottom blowdown function.


 $\frac{1}{2}''$ and $\frac{3}{4}''$ water level valves must be used with large servomotors. Industrial unic 05 servomotors must be used 1" and 1 $\frac{1}{2}''$, and industrial unic 10 for 2" water valves. for water valves bigger than $\frac{3}{4}''$.

Value Terre	Size	Davet N I.a		Servomoto	or
Valve Type	Size	Part No.	Large	Servomote Unic 05	Unic 10
Threaded Feed Water BSP/ NPT	15mm (½″)	WLCVO15	•		
Inreaded reed water b3r/ INFI	20mm (³⁄₄″)	WLCVO20	•		
	25mm (1″)	WLCVO25/FL		•	
Flanged Feed Water PN40	40mm (1 ½")	WLCVO40/FL		•	
	50mm (2″)	WLCVO50/FL		-	
	25mm (1″)	WLCVO25/FLU		•	
Flanged Feed Water ANSI 300lb	40mm (1 ½")	WLCVO40/FLU		•	
	50mm (2″)	WLCVO50/FLU			•
Thus under all TDS DSD / NIDT	15mm (½″)	TD\$70001/M15	•		
Threaded TDS BSP/ NPT	20mm (³⁄₄″)	TD\$70001/M20	•		
	25mm (1″)	BBV025FL		•	
Flanged Bottom Blowdown PN16/40	40mm (1 ½")	BBV040FL		•	
	50mm (2″)	BBV050FL			•
	25mm (1″)	BBV025FLU		•	
Flanged Bottom Blowdown ANSI 300lb	40mm (1 ½")	BBV040FLU		•	
-	50mm (2″)	BBV050FLU			•

Max operating pressure	29Bar (425 PSI)
Max operating temperature	235°C (455°F)


Note: Autoflame water level probes are rated at maximum 27Bar (392 PSI) and 230°C (446°F).

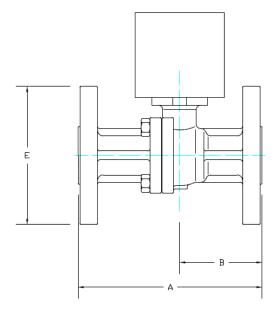
3.1 Threaded Water Valve

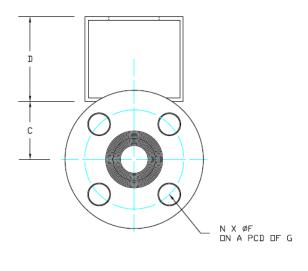
Note: $\frac{1}{2}''$ and $\frac{3}{4}''$ water level valves must be used with large servomotors. Industrial unic 05 servomotors must be used 1" and 1 $\frac{1}{2}''$, and industrial unic 10 for 2" water valves.

<u> Threaded Water Valve – Dimensions</u>

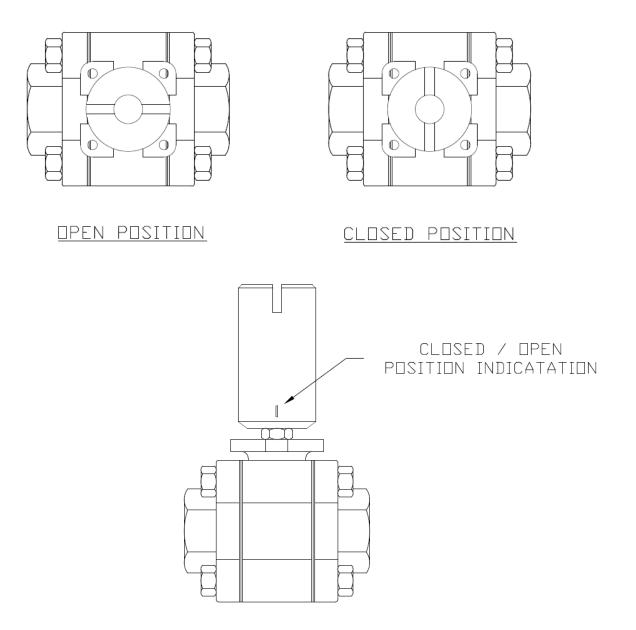
Dimensions: mm (inches)									
Part No.	Size	A	В	С	D	E	F		
WLCVO15	15 (0.5)	76.0 (2.99)	36.9 (1.45)	32.0 (1.26)	76.5 (3.01)	86.0 (3.39)	98.5 (3.88)		
WLCVO20	20 (0.75)	84.0 (3.31)	41.5 (1.63)	38.0 (1.50)	76.5 (3.01)	86.0 (3.39)	98.5 (3.88)		

Note: $\frac{1}{2}''$ and $\frac{3}{4}''$ water level valves must be used with large servomotors. Industrial unic 05 servomotors must be used 1" and 1 $\frac{1}{2}''$, and industrial unic 10 for 2" water valves.


3.2 Flanged Water Valve



Flanged Water Valve – Dimensions



Dimensions: mm (inches)									N (No.
Part No.	Size	А	В	С	D	E	F	G	Holes)
WLCVO25/FL	25 (1)	125.0	53.0	52.0	76.0	115.0	14.0	85.0	4
		(4.92)	(2.09)	(2.05)	(3.00)	(4.53)	(0.55)	(3.35)	
WLCVO40/FL	40	140.0	57.5	66.0	76.0	150.0	18.0	110.0	4
	(1.5)	(5.51)	(2.26)	(2.60)	(3.00)	(5.91)	(0.71)	(4.33)	
WLCVO50/FL	50 (2)	150.0	63.0	74.9	76.0	165.0	18.0	125.0	4
		(5.91)	(2.48)	(2.95)	(3.00)	(6.50)	(0.71)	(4.92)	
WLCVO25/FLU	25 (1)	165.0	73.9	52.0	76.0	124.0	19.0	88.9	4
		(6.50)	(2.91)	(2.05)	(3.00)	(4.88)	(0.75)	(3.50)	
WLCVO40/FLU	40	190.5	83.0	66.0	76.0	155.5	22.0	114.0	4
	(1.5)	(7.50)	(3.27)	(2.60)	(3.00)	(6.12)	(0.87)	(4.49)	
WLCVO50/FLU	50 (2)	215.9	100.0	74.9	76.0	165.0	19.0	127.0	8
		(8.50)	(3.94)	(2.95)	(3.00)	(6.50)	(0.75)	(5.00)	

Note: $\frac{1}{2}''$ and $\frac{3}{4}''$ water level values must be used with large servomotors. Industrial unic 05 servomotors must be used 1" and 1 $\frac{1}{2}''$, and industrial unic 10 for 2" water values.

3.3 Coupling Open and Closed Positions

3.4 Feed Water Valve Sizing

Obtain one value from the system relating to the units from the column headings, then compare with values using all tables and select the valve with the closest higher match, to size correctly. The feed water valves are available as threaded or flanged. The valves have a very low pressure drop so when replacing an existing feed water valve the valve size required may decrease by more than one.

	Autoflame Part No. WLCV015 - ½" feed water valve water flow calculations @20°C										
Water Velocity Pressure Drop Across Valve		W	Steam Flow Rate								
Ft/sec	M/sec	$\Delta P PSI$	ΔP Bar	G/hr (imp)	GPM (imp)	US GPM	lbs/hr	Kg/hr			
6	1.82	1	0.07	160	2.6	3.2	1600	727			
9	2.74	2	0.14	235	3.9	4.7	2350	1068			
15	4.57	5	0.34	380	6.3	7.6	3800	1727			
21	6.40	10	0.68	560	9.3	11.2	5600	2545			
26	7.90	15	1.03	700	11.6	14	7000	3182			
32	9.73	20	1.38	820	13.6	16.4	8200	3727			

	Autoflame Part No. WLCV020 - 3/4" feed water valve water flow calculations @20°C										
Water Velocity Pressure Drop Across Valve		W	Steam Flow Rate								
Ft/sec	M/sec	ΔP PSI	ΔP Bar	G/hr (imp)	GPM (imp)	US GPM	lbs/hr	Kg/hr			
8	2.43	1	0.07	460	7.7	9.2	4600	2090			
12	3.65	2	0.14	665	11	13.3	6650	3022			
19	5.79	5	0.34	1100	18.3	22	11000	5000			
28	8.53	10	0.68	1630	27.1	32.63	16300	7409			
34	10.34	15	1.03	2000	33.3	40	20000	9090			
40	12.16	20	1.38	2400	40	48	24000	10909			

	Autoflame Part No. WLCV025 - 1" feed water valve water flow calculations @20°C										
Water Velocity Pressure Drop Across Valve		o Across Valve	W	Steam Flow Rate							
Ft/sec	M/sec	ΔP PSI	ΔP Bar	G/hr (imp)	GPM (imp)	US GPM	lbs/hr	Kg/hr			
13	3.96	1	0.07	1560	26	31.2	15600	7091			
21	6.4	2	0.14	2300	38.3	46	23003	10456			
32	9.75	5	0.34	3800	63.3	76	38005	17275			
46	14.02	10	0.68	5600	93.9	112	56007	25458			
60	18.24	15	1.03	7000	116.6	140	70008	31822			
70	21.28	20	1.38	8200	136.6	164	82011	37278			

	Autoflame Part No. WLCV040 – 1 ½" feed water valve water flow calculations @20°C										
Water Velocity Pressure Drop Across Valve		W	ater Flow Rate	Steam Flow Rate							
Ft/sec	M/sec	ΔP PSI	ΔP Bar	G/hr (imp)	GPM (imp)	US GPM	lbs/hr	Kg/hr			
17	5.17	1	0.07	4700	78.3	94	47005	21366			
25	7.60	2	0.14	6700	11.6	134	67007	30458			
39	11.86	5	0.34	11200	186.6	224	112015	50916			
60	18.24	10	0.68	16500	275	330	165022	75010			
75	22.80	15	1.03	20000	333.3	400	200028	90922			
90	27.36	20	1.38	24000	400	480	240033	109126			

	Autoflame Part No. WLCV050 - 2" feed water valve water flow calculations @20°C										
Water Velocity Pressure Drop Across Valve		W	ater Flow Rate	Steam Flow Rate							
Ft/sec	M/sec	ΔP PSI	ΔP Bar	G/hr (imp)	GPM (imp)	US GPM	lbs/hr	Kg/hr			
21	6.38	1	0.07	10000	166.6	200	100014	45461			
31	9.42	2	0.14	15000	250	300	150020	68191			
46	13.99	5	0.34	24000	400	480	240033	109106			
72	21.89	10	0.68	36000	600	720	360049	163659			
85	25.84	15	1.03	44000	733	880	440061	200028			
110	33.44	20	1.38	51000	850	1021	510072	231851			

Notes

Autoflame Engineering Ltd

Unit 1-2 Concorde Business Centre Airport Industrial Estate, Wireless Road Biggin Hill, Kent TN16 3YN United Kingdom +44 (0) 845 872 2000 www.autoflame.com

